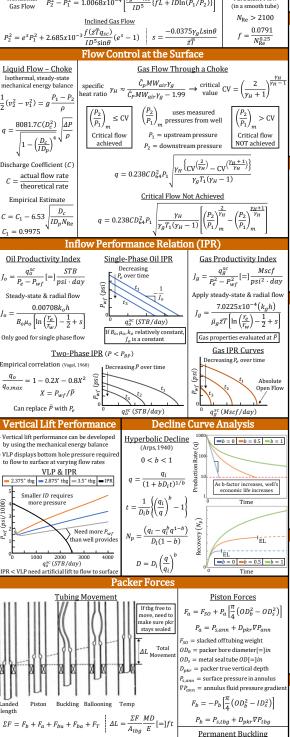

# **Fundamentals of Drilling Engineering**




# The University of Texas at Austin

## Hildebrand Department of Petroleum and Geosystems Engineering

# **Fundamentals of Production Engineering**

### Cockrell School of Engineering Flow in Pipes Corrosion Mechanical Energy Balance Friction Factor 4mass = mass lostLiquid Flow Consistent Unit loody correlations bas on Reynolds Number $\Delta t = \text{test duration}$ $N_{\rm Re} = 1.478 \frac{q\rho}{ID\mu}$ $\rho_c = \text{coupon density}$ $+ gL\sin\theta + \frac{g}{2}(P_2 - P_1) +$ $A_s = \text{coupon surface area}$ $N_{\text{Re}} = 20.09 \frac{\gamma_g q_{sc}}{ID\mu}$ Flow in Pipes = friction factor ID = internal diameter[=]inGas Flow Consistent Units L = pipeline length[=]ft $N_{\mathrm{Re}} \leq 2100$ $\gamma_g = \text{gas specific gravity}$ $\frac{zRT}{\gamma_g MW_{air}P} dP + gL\sin\theta + \frac{32fL}{\pi^2 ID^5} \left(\frac{q_{sc} zTP_{sc}}{PT_{sc}}\right)^2 = 0$ $MW_{als} = \text{molar mass of air}$ $\iota = \text{fluid viscosity}[=]cp$ $N_{Re} = Reynold's number$ $P_2^2 - P_1^2 = 1.0068x10^{-4} \left[ \frac{\gamma_g \bar{z} \bar{T} q_{sc}^2}{ID^5} \{ fL + ID \ln(P_1/P_2) \} \right]$ Turbulent Flow $P_1 = inlet pressure[=]psi$ $P_2 = \text{outlet pressure}[=]psi$ $N_{\rm Re} > 2100$ Inclined Gas Flow q = liquid rate[=] bbl/day $f = \frac{0.0791}{N_{\rm Re}^{0.25}}$ $P_2^2 = e^s P_1^2 + 2.685 x 10^{-3} \frac{f(\bar{z}\bar{T}q_{sc})}{ID^5 \sin\theta} (e^s - 1) \quad s = -\frac{1}{2} \frac{f(\bar{z}\bar{T}q_{sc})}{ID^5 \sin\theta} (e^s - 1)$ $q_{sc} = \text{gas rate}[=] Mscf/day$ $p = \text{fluid density}[=] lb_m/ft^3$ ' = avg. flowing temp[=]R $\bar{z} = \text{avg. velocity}[=] ft/\text{sec}$ <u> Liquid Flow - Choke</u> Gas Flow Through a Choke = avg. z-factor Isothermal, steady-state $\hat{C}_p MW_{\underline{air} \gamma_g}$ Flow Control mechanical energy balance specific eat ratio $\gamma_H \approx \frac{1}{\hat{C}_P M W_{air} \gamma_g - 1.99}$ $D_c = \text{choke diameter}[=]in$ $\frac{1}{2}(v_2^2 - v_1^2) = g \frac{P_1 - P_2}{}$ $ID_n = upstream diameter[=]in$ $\left(\frac{P_2}{P_1}\right)_m$ uses measured pressures from well $\Delta P = \Delta P$ across choke[=]psia $\left(\frac{P_2}{P_1}\right)_m \le CV$ $8081.7C(D_c^2)$ $\Delta P$ $\hat{C}_P = \text{constant pressure specifi}$ heat capacity[=] $BTU/lb_m$ °FP<sub>1</sub> = upstream pressure Critical flow Critical flow $D_{64} = 64(D_c)[=]in/64$ $P_2 = \text{downstream pressure}$ $\Gamma_1 = \text{upstream temp}[=]R$ $q = 0.238CD_{64}^2P_1 \ \left| \frac{\gamma_H \left\{ \text{CV} \left(\frac{2}{\gamma_H}\right) - \overline{\text{CV}} \left(\frac{\gamma_H + 1}{\gamma_H}\right) \right\}}{\sqrt{1 + \left(\frac{2}{\gamma_H}\right)}} \right\}$ Pipeline Design Discharge Coefficient (C) $\sigma_v = \min. \text{ yield strength}[=]ps$ actual flow rate = wall thickness[=]in theoretical rate OD = outer diameter[=]in Empirical Estimate $P_i = internal pressure[=]psi$ $C = C_1 - 6.53 \sqrt{\frac{D_c}{ID_p N_{Re}}}$ $C_1 = 0.997F$ $P_{MT} = \text{mill test pressure}[=]psi$ $q = 0.238CD_{64}^2P_1$ $\left|\frac{T_{H}}{\gamma_{g}T_{1}(\gamma_{H}-1)}\right|\left(\overline{P_{1}}\right)_{m}$ $P_b = \text{burst pressure}[=]psi$ $C_1 = 0.9975$ $P_d = \text{design pressure}[=]psi$ IPR $q_o^{sc} = \text{oil rate}[=] STB/day$ Oil Productivity Index Single-Phase Oil IPR **Gas Productivity Index** $P_e = \text{boundary pressure}[=]ps$ $J_o = \frac{q_o^{sc}}{P_e - P_{wf}} [=] \frac{STB}{psi \cdot day}$ Decreasing $P_e$ over time $J_g = \frac{q_g^{sc}}{P_e^2 - P_{wf}^2} [=] \frac{Mscf}{psi^2 \cdot day}$ $P_{wf} = \text{flowing wellbore}[=]psi$ $k_o = \text{oil permeability}[=]mD$ Apply steady-state & radial flow h = reservoir thickness[=]ft $B_o = \text{oil FVF}[=]RB/STB$ $0.00708k_{o}h$ $7.0225x10^{-4}(k_gh)$ $u_o = \text{oil viscosity}[=]cp$ $\overline{\mu_g \bar{z} T \left[ \ln \left( \frac{r_e}{r_w} \right) - \frac{1}{2} + s \right]}$ $B_o \mu_o \left[ \ln \left( \frac{r_e}{r_w} \right) - \frac{1}{2} + s \right]$ asc (STB/day) $r_e = \text{drainage radius}[=]ft$ w = wellbore radius[=]fi Only good for single phase flow Gas properties evaluated at P = skin factor Gas IPR Curves Two-Phase IPR $(P < P_{RP})$ $\overline{p} = \text{avg. reservoir } P[=]psi$ ecreasing P<sub>e</sub> over time $k_g = \text{gas permeability}[=]mD$ Empirical correlation (Vogel, 1968) $q_g^{sc} = \text{gas rate}[=] Mscf/day$ $\frac{q_o}{} = 1 - 0.2X - 0.8X^2$ $\bar{u}_g = \text{avg. gas viscosity}[=]cp$ ' = reservoir temp[=]RPredicting Gas Production Can replace $\bar{P}$ with $P_a$ qsc (STB/day) $G_P = \text{cumulative gas produced}$ G. = recoverable gas = original gas in place Vertical lift performance can be developed Hyperbolic Decline **■**b = 0 **■**b = 0.5 **■**b = 1 Decline Curve Analysis by using the mechanical energy balance VLP displays bottom hole pressure required = hyperbolic exponent to flow to surface at varying flow rates a = future rate [=] prod/timVLP & IPR $q_i = initial rate[=] prod/time$ As b-factor increases, well's economic life increases D = decline rate[=] 1/time $Smaller {\it ID} \ requires$ $D_i = initial decline[=] 1/time$ $N_n = \text{cumulative production}$ Artificial Lift PIP = pump intake P than well provide: PDP = pump discharge P $\Delta P_{SV} = \Delta P$ thru standing valve 0 2000 31 q<sub>o</sub>c (STB/day) $D = D_i \left( \frac{q}{q_i} \right)$ $P_{s,tbg} = \text{tbg surface pressure}$ $\nabla P_{tbg} = \text{tbg fluid } P \text{ gradient}$ S = surface stroke length[=]in $s_{tba} = tubing stretch[=]in$ Piston Forces $s_{rod} = \text{rod stretch}[=]in$



|                               | 1000           |                 |       |              |                  |          |                   |    |                                               |                  |                                 |
|-------------------------------|----------------|-----------------|-------|--------------|------------------|----------|-------------------|----|-----------------------------------------------|------------------|---------------------------------|
| l, hard metal                 |                | Max Temp 392°F  |       |              | Max Temp         | *        | ★<br>25Cr-        |    | Co                                            | orrosion R       | ate                             |
| σ <sub>y</sub> will corrode   | ssure (atm)    |                 |       | 25 Cr        | 482°F            |          | 0Ni-6Mo           | -  | $R = \frac{\Delta mass}{\rho_c A_s \Delta t}$ | mil              | mil inc                         |
| an softer metal               | e 10           |                 | r     | 25 Cr        | 23CI "33INI"3    | 7        | Max Temp<br>572°F | C  | $R = \frac{1}{\rho_c A_s \Delta t}$           | $ = {yr}$        | $\frac{1}{yr} = \frac{1}{1000}$ |
| smaller $\sigma_y$            | nssa           | 13 Cr du        |       |              | 22Cr-42Ni-3      | Mo Mo    | 3/2·F             |    |                                               | hickness lo      | ss/time                         |
| Corrosion Rate                | partial pre    | I-55            |       | Т            | 2201 12111 5     |          |                   |    |                                               | Pitting Rat      |                                 |
| ariables increase             | 0.01 artic     |                 | L-80  |              | Cr               | Ma       | ax Temp           |    |                                               | $d/\Delta t = 1$ |                                 |
| centration                    | 00 1E-3        |                 | C-90  | 1            | Cr-Mo            |          | 00°F if           |    |                                               |                  |                                 |
| ed gas                        | S 1E−3         | Q-125           | T-95  |              |                  | no       | ot noted          | d: | = deepest pit                                 | depth ∆t         | = test dura                     |
| ed CO <sub>2</sub>            | 11             | E-4 1E-3        | 0.01  | 0.1          | 1 10 100         | 1000     | .                 |    | CR (mil/yr)                                   | PR (mil/y        | r) Severity                     |
| ed H <sub>2</sub> S<br>rature | - 11           |                 |       |              | sure (atm)       | , 1000   | ·                 |    | <1.0                                          | < 5.0            | Low                             |
| ature                         | _              | -               |       |              | ` '              |          | 4 406             |    | 1.0-4.9                                       | 5.0-7.9          | Moderate                        |
| pH                            | $P_{CO_2}$     | $= z_{CO_2}P_E$ | BH .  | $P_{H_2S} =$ | $= P_{BH}(H_2S)$ | ppm/     | 1x10°)            |    | 5.0-10.0                                      | 8.0-15.0         | Severe                          |
| p                             | $z_{CO_{2}} =$ | CO2 fract       | ion P | $_{BH} = $   | static botton    | n hole F | P[=]atm           |    | >10.0                                         | >15.0            | Very Severe                     |
| Scale                         |                |                 |       |              |                  |          |                   |    |                                               |                  |                                 |

Reduces metal thickness which leads to a reduction in collapse, burst, and tensile forces

# Calcium Carbonate Scale

Approximate Material Selection

Calculate the Langelier Saturation Index (LSI) to predict scale  $pH_s = pH$  at saturation  $LSI = pH - pH_s$ 

 $pH_s = 0.1\log_{10}(TDS) - 13.12\log_{10}(T) - \log_{10}\{(Hard)(Alk)\} + 44.15$ TDS = total dissolved solids[=] mg/L T = temperature[=]K

 $Hard = \mathrm{hardness} = 1000 \big[ MW_{CaCO_3}([Ca] + [Mg]) \big] [=] \, mg/L$  $Alk = \text{alkalinity}[=] \, mg/L \, \left| \, MW_{CaCO_3} = 100.09 \, \, g/mol \, \, \right| \, [ion][=] \, mol/L$ 

 $Alk = 500[MW_{CaCO_3}([HCO_3] + 2[CO_3] + [OH] + [H])]$  [H] is negligible Scale is likely to form if  $LSI \ge 0$ 

### Sulfate Scale Tendencies Calculate the solubility (S) of the ion to predict scale

Monitoring - Corrosion Coupon

 $S = X^2 + 4K_{sp} - X X = [C] - [A] = mol/L$  $S = \text{ion solubility}[=] mol/L \mid [C] = \text{cation molarity}$  $K_{sp} = \text{equilibrium coefficient } | [A] = \text{anion molarity}$ 

Compute equivalents per liter for cation and anion Compare solubility to minimum value

 $\frac{(ion \ mg/L)(ion \ charge)}{L} [=] \frac{eq}{L}$  $1000(MW_{ion})$ Scale is likely to form if  $S \le eq/L$ 

## Pipeline Design

### General Design Steps

1. Determine **proper regulatory policy** Do not proceed until established
Design engineer's responsibility

2. Determine pipe diameter - Based on flow rate and exit pressure

Corrosion Influences

- Salt con

- Dissolve - Dissolve

Decrease in p

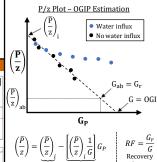
In general, hard metal

3. Determine MAOP for pipeline

4. Estimate pipe  $\sigma_v$  and t $1.5(MAOP) = \frac{2\sigma_y t}{OD} FET$ 

| alculate P <sub>i</sub> and    | $P_{MT}$      | 6. Determine test pressure               |  |  |  |
|--------------------------------|---------------|------------------------------------------|--|--|--|
| $= \frac{2(SF)\sigma_y t}{OD}$ |               |                                          |  |  |  |
| $MT \cong 0.8P_i$              | $P_i [=] P_b$ | $P_{test} = 1.5MAOP \text{ or } 1.25P_o$ |  |  |  |

- As specified by correct regulatory policy  $P_d$  and  $P_{test} < 0.85 P_{MT}$ Example using ASME B31.8


| I and A account                      |  |      |  |                     |     |   |              |       |
|--------------------------------------|--|------|--|---------------------|-----|---|--------------|-------|
| Populated areas and public roads     |  | 0.4  |  | Furnace butt welded | 0.6 |   | 400 – 450 °F | 0.867 |
| Sparsely populated residential areas |  | 0.5  |  | Furnace lap welded  | 0.8 | Ш | 350 - 400 °F | 0.900 |
| 0                                    |  |      |  |                     | -   | Ш | 300 - 350 °F | 0.933 |
| PROW on fringe of populated areas    |  | 0.6  |  | Threaded ERW        | 1.0 | Ш | 250 - 300 °F | 0.967 |
| Private right of way (PROW)          |  | 0.72 |  | Threaded seamless   | 1.0 |   | < 250 °F     | 1.0   |
| Construction Type                    |  | F    |  | Joint Type          | E   | Ш | Flowing Temp | T     |

Common Issues



- Can lead to an overestimation of total recovery

Can use a P/z plot as another predictor - Developed from the Real Gas Law



Poor

Fair

Poor

Good

Poor

Fair

Paraffin

High GOR

Deviated Hole

High Volume

Simple Design

Casing Size

NP = net price

 $F_{bu} = A_{pkr} (\Delta P_{ann} - \Delta P_{tbg})$ 

 $\Delta P_{ann} = \Delta P_{s,ann} + \frac{D_{pkr} \nabla P_{ann}}{2}$ 

 $\Delta P_{tbg} = \Delta P_{s,tbg} + \frac{D_{pkr} \nabla P_{tbg}}{2}$ 

**Tubing Ballooning** 

| .        | Damage Type                                 | Detection Methods                    | Prevention Methods                            | Removal Methods                                     |  |
|----------|---------------------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------------------------|--|
| <i>'</i> | Calcium<br>Carbonate Scale                  | Water analysis<br>Physical sample    | Scale inhibitor<br>Scale squeeze              | HCl acid job                                        |  |
|          | Barium<br>Sulfate Scale                     | Water analysis<br>Physical sample    | Scale inhibitor                               | Mechanical remova<br>Re-perforation                 |  |
|          | Sodium<br>Chloride                          | Water analysis<br>Physical sample    | Reduce pressure drop<br>to reduce gas cooling | Fresh H <sub>2</sub> O circulatio<br>Re-perforation |  |
|          | Emulsions<br>and Sludge                     | Physical sample<br>Lab analysis      | Emulsion<br>breaker                           | Emulsion breaker<br>Mutual Solvent                  |  |
|          | Liquid Block<br>Gas Well                    | Well history<br>Lab analysis         | Limit pressure<br>drop at wellbore            | Mutual solvents                                     |  |
|          | Asphaltenes Physical sample<br>Oil analysis |                                      | Inhibitors<br>Application of heat             | Inhibitors<br>Application of heat                   |  |
| ΙP       | Paraffin                                    | Physical sample<br>Oil analysis      | Inhibitors<br>Application of heat             | Inhibitors<br>Application of heat                   |  |
|          | Formation<br>Fines                          | Physical sample                      | Limit production rate<br>Gravel/frac pack     | Re-perforation<br>Small frac job                    |  |
|          | Clay<br>Swelling                            | Lab analysis<br>Production rate drop | Don't introduce incompatible water            | Re-perforation<br>Small frac job                    |  |
|          | Bacteria                                    | Physical sample<br>Lab culture       | Don't introduce<br>bacteria laden water       | Bacteriacides                                       |  |
|          | Antificial                                  | I (A)                                |                                               |                                                     |  |

Beam Lift

### Rod Pump ESP Gas Lift Good Fair Fair Fair Excellent

| Excellent | Pressure Differential Across Plunger                          |
|-----------|---------------------------------------------------------------|
| Poor      | _                                                             |
| Excellent | $\Delta P = PDP - PIP + \Delta P_{SV}$ $PIP = P_{W_s}$        |
| Good      | $PDP = \nabla P_{tbg}D_{pump} + P_{s,tbg} + P_{fric}$         |
| Fair      | Pump Displacement                                             |
| Good      |                                                               |
| Good      | $q = 0.1166Nd_p^2S_p\eta_p[=] bbl/day$                        |
| No        | $N = \text{pump speed}[=]spm \ \eta_p = \text{pump efficien}$ |
| Good      | $d_n = \text{plunger diameter}[=]in$                          |
|           |                                                               |

| $PDP = \nabla P_{tbg} D_{pump} + P_{s,tbg} + P_{fric}$          |
|-----------------------------------------------------------------|
| Pump Displacement                                               |
| $q=0.1166Nd_p^2S_p\eta_p[=]bbl/day$                             |
| = pump speed[=] $spm \ \eta_p$ = pump efficiency                |
| $d_p = \operatorname{plunger}\operatorname{diameter}[=]in$      |
| Effective Stroke Length                                         |
| $S_p = S + s_{po} - s_{tbg} - s_{rod}[=]in \label{eq:spectrum}$ |
|                                                                 |

= plunger overtravel  $s_{tbg} = 0$  tbg anchored

| $V_{rf} = W_{rod} \left( 1 - \frac{\rho_f}{\rho_{rod}} \right)  W_{rf} = \text{buoyed} $ rod weight |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $V_{load} = W_{rf}$ $TV_{load} = F_o + SV_{load}$                                                   |  |  |  |  |  |  |
| Pump Slippage (Patterson, et al. 2007)                                                              |  |  |  |  |  |  |
| $d_p \Delta P c_p^{1.52} = 1$                                                                       |  |  |  |  |  |  |

Rod Loads

 $PPRL = W_{rf} + F_o + W_{D,up}$ 

 $MPRL = W_{rf} - W_{D,down}$ 

| Reserve classification common reconyms                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1. PDP: Proved Developed Producing – well is online and producing                                                                         |
| PDNP: Proved Dev. Non-Producing – reserves are behind pipe, well is<br>shut-in, or waiting on necessary equipment installation to produce |
| 3. PUD: Proved Undeveloped – offsetting wells or existing wells that would require a major recompletion                                   |

 $NP_g = GP(1 - ST_g - AVT) + OP(OY)(1 - ST_o - AVT)$ 

 $NP_o = \text{net oil price}$  ST = severance tax OY = oil yield

Poor

Poor

| ; | FV = future value    | ١. |
|---|----------------------|----|
|   | DF = discount factor |    |
|   | n =                  | di |
|   | Converting Pro       | d  |

DCF  $DROI = \frac{1}{Investment}$ 

| PV = (FV)(DF)                              | DR = discount rate |  |  |  |  |
|--------------------------------------------|--------------------|--|--|--|--|
| $DF = \left(1 + \frac{DR}{n}\right)^{-tn}$ | DR[=] decimal/y    |  |  |  |  |
| $DF = \left(1 + \frac{n}{n}\right)$        | t = time in years  |  |  |  |  |
| iscounting periods per year                |                    |  |  |  |  |
| luction into Cash Flow                     |                    |  |  |  |  |

**Economic Limit** Net Revenue Ta (GR)(NRI) (NR)(STOPEX[=] \$/time $EL = \frac{OPEX}{NP} \left( \frac{WI}{NRI} \right) [=] \frac{prod}{time}$ WI = working interest

| GR)(NRI)                                      | (NR)(SI + I  | 4 <i>VI)</i> | NK - OPEX -     | I AX | (UF)(DF)           | ı |
|-----------------------------------------------|--------------|--------------|-----------------|------|--------------------|---|
| R = gross revenue = (production)(gross price) |              |              |                 |      |                    |   |
| Evaluating Potential Investments              |              |              |                 |      |                    |   |
| sc. Return o                                  | n Investment |              |                 |      | iscounted Payou    |   |
|                                               | DCF          | Dis          | count rate that | Time | required to return | n |

yields a net present

value of zero

Time Value of Money

 $F_{\alpha} = \text{force acting on seals from above}$  MD = pkr measured depth

If the cannot move, need to check tensile strength of pkr and the

 $F_{top} = MD(W_B) - F_T - F_{ba} - F_{SO} \label{eq:fop}$ 

Temperature Change

 $F_T = A_{tbg}(\Delta T)E\delta = 207A_{tbg}(\Delta T)$ 

= force acting on seals from below  $A_{tbg}$  = cross sectional area

force at top of tubing  $W_B = \text{buoyed tbg weight}[=] lb_f/ft$ 

 $E = 30 \times 10^6 \text{ psi}$ 

MPRL = min. polish road load

PPRL = peak polish rod load

 $L_p = \text{plunger seal length}[=]ii$ 

Packer Forces

 $F_o = \text{fluid weight}[=]lb_f$ 

 $P_b = P$  below the packer

 $A_{pkr} = cross sectional area$  $\Delta P_{ann} = \text{avg. } \Delta P \text{ in annulus}$ 

 $\Delta P_{tha} = \text{avg. } \Delta P \text{ in the tubing}$ 

S = linear thermal expansion

Resource Economics

NRI = net revenue interest

AVT = ad valorem tax

 $NP_{\alpha} = \text{net gas price}$ 

OP = oil price

GP = gas priceGOR = gas-oil ratio

 $ID_c = \text{seals } ID \lceil = \rceil in$